Drop-C: The Drop-In, Ring-of-Power Heliostat

SETO CSP Program Summit 2019 03/19/2019 Kyle Kattke Kyle.Kattke@SolarDynLLC.com

Project Structure and Goals

- 3 technologies being developed in parallel
 - Primary: Drop-C Heliostat
 - Supporting technologies: Wireless Mesh Network (WMN) and Rapid Calibration (RC) system

	Drop-C Heliostat	Wireless Mesh Network	Rapid Calibration
Overall Project Goals	 ≤ \$50/m2 installed cost 4mrad calm / 5mrad windy optical error 35mph operational / 94 mph survivable wind speed ≥ 30-year lifetime 	 command response of any controller within ≤30s ability to wirelessly update parameters and firmware wireless controller = \$70/unit security fail-safes disallow unintended damage 	 ≤ 0.5mrad error detection sensitivity calibration rate ≥1000 heliostats/day operable within required solar field layouts and heliostat orientations validated to be compatible with surround-type receivers
Period 1: Oct 2017 – Jan 2019	Wind tunnel scaled testingDigital prototypeFEA modelComponent evaluation testing	Wireless technology selection30-node wireless network testConceptual heliostat controller	 Analytical model to test feasibility of RC system Bench scale rapid calibration test
Period 2: Feb 2019 – Jan 2020	 Component accelerated lifetime testing Construct 2 x full scale prototypes Structural and optical testing Advanced lower-cost design developed 	250-500 node wireless network testPrototype heliostat controller	 Design and test camera enclosure Test RC system at tower facility with multiple full scale heliostats
Period 3: Feb 2020 – Dec 2020	 Drawing package Construct 3 x full scale prototype Perform extended qualification testing 	Finalize controller designFinalize heliostat array controller	Redesign camera enclosure and retest RC system as needed

Drop-C: Design Motivation

- Commercial utility-scale heliostats
 - Size: range from 20.8m² (Brightsource LH2.3) to 178m² (Sener)
 - Cost Range: \$120-140/m²
 - Commonality: pedestal mount design
- Abengoa Solar's Ring-of-Power (ROP) Heliostat
 - Developed in Colorado office under award #EE0003596
 - Novel approach eliminates need for ground anchors
 - Installed Cost: \$114/m²
 - Drop-C is an evolution of the ROP

Novel ballast only carousel design

Abengoa Solar's ROP heliostat

Traditional carousel design requiring central ground anchors

Titan Tracker's heliostat

DLR's lay-down heliostat

Drop-C: Overview

Drop-C: Front View

Attributes

- Efficient space frame support system
- Azimuth drive/idler wheels transmit all loads to foundation (no central ground anchor required)
- Ballast foundation
- Drop-In place installation
- Reduced civil work, permitting, and geotechnical risk in the solar field

Drop-C Heliostat Key Metrics		
Reflective area	27 m ²	
Overall dimensions	8.46 m wide x 3.21 m tall	
Aspect ratio	2.6 (width/height)	
Stow height	1.98 m	
Mirror shape	Flat, no-canting	
Foundation	Ballast	
Power	PV plus battery	
Control	Wireless	

Drop-C: Wind Tunnel Study

Isolated Heliostat Testing

- Parametric tests varying stow height
- Support structure sized by 90°elevation case where loads ≠ f(stow height)
- Foundation mass sized by stow overturning + lift loads

Stow Height vs. Foundation Mass Cost

Stow Height [m]	1.1	1.7	2.5
Foundation Material Cost [\$/m²]	\$5.5	\$5.8	\$9.0

Tested Mirror Stow Positions

- Savings at lowest stow height not great enough to offset higher structural support and elevation actuator costs
 - 1.98 m stow height selected for Drop-C

Isolated Heliostat Testing

- 59 heliostats in wind tunnel to quantify interior field load reduction due to shielding from upwind heliostats
- Interior heliostat loads achieved at rows ≥ 4 from edge of solar field

Interior Heliostats Peak Load Reductions for Operational Orientations

Load Component	Fx	Fz	Mz	Му
Max Interior/Max Exterior Gust Load	52%	72%	60%	73%

Heliostat Field Wind Tunnel Testing

Drop-C: Assembly Plan

- Production rate of 1 heliostat every 7 minutes solar field constructed in 11 months
- Drop-C assembled in automotive style assembly line with 5 main operations (OP)
 - Infrastructure costs calculated using defined workstations and assembly tent size
 - Number of workers required per workstation calculated to meet production rate

Drop-C Assembly Tent Layout

Drop-C Assembly Operations

Operation	Description
OP 1.0	Base triangle sub-assembly
OP 2.0	Base triangle attached to foundation along with partial lower structure and azimuth drive
OP 4.0	Torque tube and facets sub- assembly
OP 3.0	Torque tube/mirror assembly attached along with remaining lower structure and elevation drive
OP 5.0	PV panel installed with all control/power wiring

- Complete Drop-C trucked out to solar field
- Placed in final position with telehandler with gripper attachment

Drop-C: Budget Period 1 Outcomes

- \$76/m² installed cost estimate
 - Exterior solar field location
 - Arizona project site with 40k heliostat solar field

- Areas for further cost reduction:
 - Create interior solar field specific Drop-C design
 - Fine tune mirror area
 - Add closed loop control through enhanced Rapid Calibration system
 - Replace portion of concrete mass with cheaper ballast (ie. local rock, gravel)

Drop-C: Front View

Wireless Network: Design and Testing

- SmartMesh IP wireless mesh network within solar field
 - Benefits: scalable 50k nodes, suitable for dense networks, commercial product with developer resources
 - Risk: only analytically proven at 50k scale (same risk applies to all wireless technologies)
- Budget Period 1 Testing
 - 30 node network test
 - Good network performance measured with heliostats tracking throughout the day
 - < 13 sec command/response speed
- Budget Period 2 Testing
 - 250-500 node network test

30-node WMN test layout at Sandia's NSTTF

Rapid Calibration System (RCS): Overview

- RCS measures tracking error of 100's-1000's of heliostats simultaneously
 - Heliostat's images remain on receiver during measurement
 - Five measurements are taken each day to recalibrate a heliostat

RCS system description

- Set of 4 cameras installed around/embedded within receiver
 - Each 4 camera set has narrow field of view (FOV) of the solar field
 - Multiple 4 camera groups installed to image entire solar field
- Each camera in 4 camera set simultaneously takes an image, then for each heliostat in FOV:
 - Image processing identifies each heliostat and its associated pixels
 - Using pixel intensities, define a vector from the heliostat center to center of sun image
 - Intersection of vectors from each camera predicts the heliostat's reflected image centroid

Testing

- RCS shown to work analytical with ray casting tool
- Bench-scale experimental, outdoor testing is on-going

SolarDynamics

RCS Schematic

RCS Simulated Field Cameras

Drop-C Project: Value Proposition

Cost Competitive CSP

 State-of-the-art heliostat costs reduced by up to 60% enabling cost competitive CSP against fossil fuel generation. Fixed costs per heliostat lowered with Wireless Mesh Network.

Drop-In Place Heliostat Enables Multiple Use Cases

 Drop-In place minimizes the fixed permitting and installation cost per solar field along with smaller size makes the Drop-C appropriate for multiple receiver sizes enabling small demonstration projects as well as utility scale plants.

Increased Production

 The rapid calibration system can reduce tracking errors in existing and planned projects. Results in increased production or relaxed heliostat design criteria.

Field Diagnostics with Quick WMN Deployment

• The Wireless Mesh Network enables sensors to be distributed in existing solar fields with real time data collection.

Acknowledgment

 This project was made possible with funding from the US Department of Energy's Solar Energy Technology Office under award DE-EE0008024

